大机防碰撞系统 斗轮堆取料机 堆料机定位
第1章 系统简介
1.1 概述
随着水路运输业的快速发展,现代港口规模和吞吐量不断增长,港口各种装卸设备数量不断增加,如何高效可靠使用这些装卸设备是各港口单位关心的问题。港口装卸设备中主要的斗轮堆取料机又称悬臂式堆取料机,是散货堆场作业的核心设备。它是堆取料合一的机械,即是一种挖取和堆存煤炭、矿石、砂石等松散物料的高效率机械。它不仅适用于电厂,而且在码头、港口也很适用,大多数的转运煤及松散物料的码头、港口都采用斗轮堆取料机。斗轮堆取料机的采用,大大缩短了堆取时间,提高了工作效率,减轻了工人劳动强度。
为提高装卸均化作业的效率和安全问题,应保证堆取料机具备寻堆认址、定位, 自动确定各层料堆起点、终点及位置跟踪、终点记忆、料流对中心、电缆保护、整机自动堆取料,从而实现流畅和高效的堆取料自动作业。同时中控室能够对作业过程进行监视。所以有必要对堆取料机大机位置进行连续跟踪、悬臂三维位置实时检测,解决堆取料作业过程中空间防碰撞的难题。
1.2 目前大机采用的定位方式
目前堆取料机位置检测大多采用的是人眼定位、光电编码器装置(光码盘)、激光位移传感器、行走限位开关、RFID方式。光电编码器装置,整套装置安装在驱动电机前部的一个金属壳体内,由盘状齿轮与定位车齿条啮合,通过驱动轴驱动编码器。盘状齿轮的圆周与定位车驱动小齿轮的圆周相同。编码器由传动齿轮自下而上通过减速机、联轴节驱动,实现定位车的位置检测。这几种检测位置的方式均存在一定缺陷,具体表现如下:
1) 人眼定位受制于眼睛健康状况和精神状态,环境影响比较大,作业时间长;
2) 光电编码器装置在车轮打滑就会形成累计误差, 相对定位的机械接触工作方式;
3) 激光位移传感器在不洁净环境会失去作用,轨道沉降导致车辆走行抖动会使反光板靶位不准,亦会导致位置检测不准;
4) 行走限位开关由于是点定位,对连续性位置检测存在盲区;
5) RFID方式是无线点定位,存在漏读现象, 延时较大;
故这几种传感器在检测位置时多数为机械式、灵敏度低、寿命短、故障率高、可靠性低,操作繁锁,而且存在溜放环节(即失控区),致使半自动操作难以可靠稳定运行。由于堆取料机是较大的设备,其惯性较大,在启动和停止时也是硬性的,所以在工作过程中会产生很大的撞击和震动,噪音污染严重,严重影响其安全性和有关零部件的寿命,易于损坏设备,由此设备精确位置控制显得尤为重要。
1.3 悬臂采用的检测技术
通常的悬臂空间位置反馈都是采用行走、旋转、俯仰三个旋转编码器的数值计算得出的,对悬臂的空间位置计算过程非常复杂,该计算过程需要结合行走、俯仰、旋转三个编码器的数值进行空间建模,而这三个编码器都有不同程度的误差,这就造成累积误差,故悬臂空间坐标的准确性不高。现有的防碰撞方法是根据两台堆取料机是否处于同一个场垛进行判断,如果两台堆取料机不在同一个场垛就可以正常作业。两台堆取料机进入一个场垛进行作业时,就对两台堆取料机同时进行锁定,使其不能工作,由此避免堆取料机之间发生碰撞,这严重影响了堆取料机的同场作业。
由于以上原因,当前都采用人工监控的方法来避免空间碰撞事故。现有的防碰撞方法无法有效避免堆取料机空间防碰撞问题,使得两台堆取料机无法同时在同一个堆场中安全作业,严重影响效率。
1.4 本系统采用的GNSS定位技术
本系统采用在堆场合适位置建立基准站,在堆取料机的回转中心和悬臂中部或者头部中心点安装GPS流动站。通过GPS的位置信息和空间几何算法,得出两台堆取料机之间的最小距离,从而可以判断出堆取料机发生碰撞的可能性,使得作业人员进行相应处理。本系统可以实时计算出堆取料机悬臂的相对位置和距离,实现多台堆取料机在同一个场垛中安全作业。该系统包括:大机及悬臂位置反馈系统、空间数据算法系统、空间防碰撞预警控制系统。
第2章 GNSS定位系统
2.1 GNSS系统组成
GNSS是全球卫星导航系统的总称,包括GPS(美国)、GLONASS(俄罗斯)、伽利略(欧盟)、北斗(中国)总共四套导航系统。而目前在轨运行并能真正实现民用定位功能的只有GPS和GLONASS两套定位系统。
主要特点:具有全球覆盖、全天候、高精度、实时导航定位等优点。
2.2 GNSS系统介绍
GNSS系统主要由三部分构成:空间卫星部分、地面监控部分、用户GNSS接收机部分。
卫星部分主要是再轨运行的专门用于导航的卫星,目前GPS和GLONASS在轨运行的卫星总共有60多颗,每颗卫星均在不间断地向地球播发调制在两个频段上的卫星信号。在地球上任何一点,均可连续地同步观测至少4颗GNSS卫星,从而保障了全球、全天候的连续地三维定位,而且具有良好的抗干扰性和保密性。地面监控部分主要是控制卫星姿态、参数设置等得主控站和测控站,都是有政府部门控制的。第三部分就是我们用户接收机部分,这部分就是我们通常所说的GPS接收机。
2.3 GNSS定位原理
一般来说,在平面上要确定某点的位置,需要两个要素。而在空间上,要确定某点的位置,就需要三个要素。GNSS定位空间上的某一点,首先我们可以得到GPS卫星的位置;其次,我们又能准确测定我们所在地点A至卫星之间的距离,那么A点一定是位于以卫星为中心、所测得距离为半径的圆球上。进一步,我们又测得点A至另一卫星的距离,则A点一定处在前后两个圆球相交的圆环上。我们还可测与第三个卫星的距离,就可以确定A点只能是在三个圆球相交的两个点上。根据一些地理知识,可以很容易排除其中一个不合理的位置。但是由于GPS的干扰因素较多,所以定位空间上的某一点,至少需要五颗以上的卫星。
2.4 差分技术的应用
单台GNSS接收进行定位因为受到很多干扰因素的影响,精度很低,一般只有三四米左右。所以为了提高定位精度,我们引进了差分技术。差分GPS产品一般由基准站、流动站和数据链三部分构成,在测量时两台或多台GPS接收机同步观测GPS卫星。由基准站发射卫星的改正信息,流动站在收到GPS信号的同时接收到基准站的定位结果。
差分技术很早就被人们所应用。它实际上是在一个测站对两个目标的观测量、两个测站对一个目标的观测量或一个测站对一个目标的两次观测量之间进行求差。其目的在于消除公共项,包括公共误差和公共参数。安装和防护,不影响作业环境。
随着GPS技术的发展和完善,应用领域的进一步开拓,人们越来越重视利用差分GPS技术来改善定位性能。它使用一台GPS基准接收机和一台用户接收机,利用实时或事后处理技术,就可以使用户测量时消去公共的误差源。这样就可以大幅提高测量精度,可以达到厘米级精度。
第3章 系统架构建立
本系统主要由大机及悬臂位置反馈系统、空间数据算法系统、空间防碰撞预警控制系统等构成。
3.1 基准站系统
基准站系统给各台堆取料机提供差分数据,是整个系统的控制部分。其工作原理是基准站接收机将自己获取的高精度定位数据,通过光纤模式、电台、GPRS或WIFI方式将差分数据发送到堆取料机的接收机上;接收机通过将自身的定位数据和基准站的差分数据进行差分解算,最后得到厘米级定位数据。
差分示意图
基准站差分系统主要包括基准站GNSS接收机和差分数据电台。基准站作为整个系统的基准必须建立在一个干扰少,基础稳定的位置,以便保证整个系统的定位精度以及全天候使用。一般来说基准站系统建立空旷的房屋楼顶上,单独建立立柱必须做好防雷措施。
基准站观测墩
3.2 流动站系统
在每台堆取料机上安装两台流动站,流动站接收机天线分别安放在大机回转中心和悬臂中部或者头部中心点处。两台流动站实时检测空间的三维坐标信息,并计算出每台堆取料机的位置、俯仰、角度信息等,并通过数据链路传输给中控室的PLC主机,这样根据“两点确定一条直线”原理,中控PLC就可以实时的知道堆取料机的大机回转中心和堆取料机的悬臂头部中心所在轴线的位置了。并对相邻的堆取料机进行两两比较,计算出他们之间的安全距离,臂架俯仰和旋转的最大角度。一旦相邻的堆取料机之间的距离小于安全距离或旋转、俯仰角度超出安全角度时,软件将自动向操作人员发出报警信息以及停机信号,防止意外事故的发生。
通过RTK方式来检测悬臂位置信息可以精确到厘米级,并且不受自身行车轮打滑和其它编码器累积误差的影响,比现有的防碰撞方法更加准确高效。克服了现有技术中由于悬臂空间位置反馈都是采用行走、旋转、俯仰三个编码器的数值计算,而造成的误差累积问题。
3.3 系统监控软件
系统监控软件的主要作用是负责人机交互,用最直观的方式将整个料场所有设备的运行状态显示在上位机屏幕上,操作人员和中控室的管理人员能够实时的对料场生产进行监控和管理,预防生产事故发生,提高作业效率和堆取精准度。
3.3.1 监控软件的分布位置
(一) 安装在中控室:安装在中控室的软件,主要负责显示整个料场所有设备的运行状态,用仿真的形式,显示在上位机屏幕上。包括每台大机的行走位置,回转中心旋转角度,悬臂垂直俯仰角度,堆料(取料)的状态,皮带运行状态。根据每台堆取料机的状态参数,计算出相邻取料机悬臂之间的最短距离,并根据操作人员在软件中设置的报警距离(比如10米),进行实时监控,一旦相邻取料机的悬臂距离小于报警值,软件就开始用声光报警方式发出报警,操作人员得知后,进行相应的处理。
(二) 安装在大机操作室:安装在大机操作室的软件,主要负责显示和自身相邻的1个(或2个)堆取料机的工作状态,包括行走位置,回转中心旋转角度,悬臂垂直俯仰角度,堆料(取料)的状态,皮带运行状态。根据每台取料机的状态参数,计算出相邻取料机悬臂之间的最短距离,并根据操作人员在软件中设置的报警距离(比如10米),进行实时监控,一旦相邻取料机的悬臂距离小于报警值,软件就开始用声光报警方式发出报警,操作人员得知后,进行相应的处理。和安装在中控室的软件不同,它不必显示整个料场所有堆取料机的状态,只显示出和自身相邻的1个(或2个)堆取料机即可。
3.3.2 监控软件的主要功能
(一) 用仿真模拟的方式将整个料场所有设备的工作状态全部显示。包括每台堆取料机的行走位置,回转中心旋转角度,悬臂垂直俯仰角度,堆料(取料)的状态,皮带运行状态。
(二) 将整个料场用刻度标尺进行标注。刻度标尺支持任意大小(从1米到2000米)。操作人员可以通过在软件中设置相应的参数来自由定义。
(三) 在功能二的基础上,管理人员可以在料场的任意位置,以任意大小的面积来标注堆料状况,可以标注出堆料种类,堆料重量,堆料面积,并且可以根据需要和个人习惯,标注备注内容,设置料堆为任意颜色,方便自身的统计和监控。
(四) 可以对堆取料机之间的碰撞报警进行设置。报警分为3个档,分别为:预警,报警,急停。每个档都可以设置一个具体的报警距离(例如20米)和一个报警颜色。
(五) 对报警的内容进行存储记录,所有的报警记录都将被保存,权限较高的用户可以查阅这些记录。记录中包含了日期,报警内容,报警时间等相关的重要信息。方便生产检查追溯。
(六) 多协议通讯的能力,软件具备多种设备的通讯协议,可以和PLC、OPC、串口、以太网等进行通讯,方便用户将本系统和其他系统进行沟通整合。
(七) 扩展功能。本软件不但可以监测料场内所有堆取料机的空间位置信息,还可以监测任何安装了本公司流动站系统的设备,包括各种运输车,铲车等。通过加装流动站系统,就可以方便的拓展软件功能,从而达到监测料场内所有移动目标的效果。
第4章 系统实现功能效果
使用本系统后,进行数据采集和空间几何算法,再将计算结果传给PLC,进行大机精确位置检测和防碰撞控制的计算与报警,还可以检测悬臂旋转角度及俯仰角度,效果显著。不但解决了其它位移传感器检测大机位置不准确的问题,而且节省了检测悬臂旋转角度及俯仰角度的传感器,消除了数据检测中间转换的误差,提高了数据精准度。同时,计算过程简单、直观,可实现多台堆取料机同场同时作业,实时检测各个悬臂之间的最小距离,防止发生碰撞,提高了安全性和作业效率,可用于多种类型的堆取料机,提高同场作业效率达到80%左右,可以实现无人操作。
* 堆取料机走行位置、装卸位置精确检测;
* 可实现堆取料机自动走行,自动堆取料;
* 实现位置联锁,可以防止两端掉道或碰撞事故;
* 与堆取料机小皮带联锁控制,防止混料、错料、堵料事故;
* 可进行鳞状堆积预混匀作业,以提高原料成分的均匀度、减少粒度偏析;
* 实现堆取料机远程监控功能;
* 结合皮带秤数据对堆场堆存量数字化管理;
* 严格控制堆料形状和取料规律,可以大大提高料场的存储容量,提高料场的利用率;
* 变起点定终点工艺可将料堆截面堆成长方形,减少端部料的产生和浪费,也同时减少铲车进场的作业量。
第5章 联系方式
更详细资料请联系:
宜昌索尔德自动化科技有限公司
Yichang sold Automation Technology Co.Ltd.
地址:湖北宜昌市高新技术开发区城东大道10-6-108号
邮政编码:443000
24小时热线:18671740040
办公电话:0717-6566110
邮箱:18671740040@163.com
QQ:984977709 群:292452310
网址:http://www.ycsold.cn
复制本页链接:https://www.88huangye.com/huangyegy/show-44325.html
其它信息推荐:| 刻度标尺推拨车机位置检测系统 | 刻度标尺精确定位系统 | 天车行车定位跟踪系统 2014新产品 厂家直销 | 大机防碰撞系统 斗轮堆取料机 堆料机定位 | 推拨车机行走定位控制装置 | 2014年设备品质 悬臂式斗轮堆取料机定位系统 | 烧结工程配料室混匀仓上卸料小车定位系统 | 自动化精确定位装置系统 刻度标尺定位 | 矿热炉天车控制系统 | 刻度标尺精确定位系统